Implementation of the iterative finite-difference time-domain technique for simulation of periodic structures at oblique incidence
نویسندگان
چکیده
In this paperwe review a recently developed finite-difference time-domain (FDTD) iterative technique for the analysis of periodic structures at oblique incidence.We showhow it can be implemented in FDTD code and estimate required computer memory and time resources. To illustrate performance of our technique we demonstrate the plasmon formation in a thin gold film placed at air/glass interface and calculate reflectance from silicon textured coating at oblique incidence. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملTransfer-matrix approach for finite-difference time-domain simulation of periodic structures.
Optical properties of periodic structures can be calculated using the transfer-matrix approach, which establishes a relation between amplitudes of the wave incident on a structure with transmitted or reflected waves. The transfer matrix can be used to obtain transmittance and reflectance spectra of finite periodic structures as well as eigenmodes of infinite structures. Traditionally, calculati...
متن کاملBand Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method
We report the simulation results for impact of nonlinear Kerr effect on band structures of a two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide (W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The numerical simulation was performed using...
متن کاملTime-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation.
We describe an efficient implementation of the finite-difference time-domain (FDTD) method as applied to lightwave propagation through periodic media with arbitrary anisotropy (birefringence). A permittivity tensor with non-diagonal elements is successfully integrated here with periodic boundary conditions, bounded computation space, and the split-field update technique. This enables modeling o...
متن کاملImplementation of Mur’s Absorbing Boundaries with Periodic Structures to Speed up the Design Process Using Finite-difference Time-domain Method
The finite-difference time-domain (FDTD) method is used to obtain numerical solutions of infinite periodic structures without resorting to the complex frequency-domain analysis, which is required in traditional frequency-domain techniques. The field transformation method is successfully used to model periodic structures with oblique incident waves/scan angles. Maxwell’s equations are transforme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 185 شماره
صفحات -
تاریخ انتشار 2014